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Abstract: Despite widespread agreement that a carbon tax would be more efficient,
many countries use fuel economy standards to reduce transportation-related carbon
dioxide emissions. We pair a simple model of the automakers’ profit maximization
problem with unusually rich nationally representative data on vehicle registrations
to estimate the distributional impact of US fuel economy standards. The key insight
from the model is that fuel economy standards impose a constraint on automakers
that creates an implicit subsidy for fuel-efficient vehicles and an implicit tax for fuel-
inefficient vehicles. Moreover, when these obligations are tradable, permit prices
make it possible to quantify the exact magnitude of these implicit subsidies and taxes.
We use the model to determine which vehicles are most subsidized and taxed, and we
compare the pattern of ownership of these vehicles between high- and low-income
census tracts. Finally, we compare these distributional impacts with existing estimates
in the literature for a carbon tax.
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GLOBAL OIL CONSUMPTION now exceeds 90 million barrels per day (EIA 2016)
fueling the more than 1.2 billion vehicles in use worldwide (BP Energy 2015). Total
carbon dioxide emissions from road transportation exceed 5 gigatons annually (IPCC
2015), approximately one-sixth of all anthropogenic emissions. Policy makers are in-
creasingly turning their attention to this important sector, evaluating alternative ap-
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proaches for reducing carbon dioxide emissions. Economists agree that the most cost-
effective approach would be a carbon tax, or equivalently, taxes on gasoline and diesel.
Carbon dioxide emissions are proportional to fuels consumption, so either approach
would be first-best for reducing carbon dioxide emissions from driving.

Despite widespread agreement that a carbon tax would be more efficient, many
countries use fuel economy standards to reduce transportation-related carbon dioxide
emissions. The United States and Japan have long histories with fuel economy stan-
dards, and similar policies have also been recently implemented by the European
Union, China, India, and elsewhere (Anderson and Sallee 2016). The exact format
differs between countries, but many programs follow the US Corporate Average Fuel
Economy (CAFE) standards in requiring automakers to meet a minimum sales-weighted
average for their vehicle fleets.

It can be easier politically to introduce fuel economy standards than taxes, but the
two are not equivalent. Probably the single biggest limitation of fuel economy stan-
dards is that they do not achieve the efficient level of vehicle usage; to efficiently re-
duce gasoline consumption you need people to buy more fuel-efficient cars and to
drive them less. But economists have pointed out other disadvantages as well. For
example, Jacobsen and van Benthem (2015) show that fuel economy standards re-
duce the incentive for drivers to retire old vehicles, leading fuel-inefficient vehicles
to stay on the road longer. Overall, studies have found that fuel economy standards
are three to six times more costly than a carbon tax (Austin and Dinan 2005; Jacobsen
2013).

In this paper we ask a different but related question. Are fuel economy standards
regressive? How the burden of standards is borne between high- and low- income
households is one of the factors that must be considered when comparing standards
to alternative policies for reducing carbon dioxide emissions. To answer this question,
we pair a simple model of the automakers’ profit maximization problem with unusu-
ally rich nationally representative data on vehicle registrations. The key insight from
the model is that fuel economy standards impose a constraint on automakers that cre-
ates an implicit subsidy for fuel-efficient vehicles and an implicit tax for fuel-inefficient
vehicles. Moreover, when these obligations are tradable, as they are under US CAFE
standards, the permit prices make it possible to quantify the exact magnitude of these
implicit subsidies and taxes.

When we consider new vehicles only, we find that US fuel economy standards are
mildly progressive. High-income households bear more of the cost as a fraction of in-
come than low-income households. However, this largely reflects that high-income
households buy more new vehicles. When we expand the analysis to include used ve-
hicles, standards become mildly regressive.

We then compare these distributional impacts with existing estimates in the liter-
ature on the distributional impact of a carbon tax. In general, this literature has found
that the regressivity or progressivity of a carbon tax strongly depends on what is done
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with the collected revenue. Comparing our estimates with the previous literature, we
conclude that CAFE standards are more progressive than a carbon tax that does not
recycle the revenue, but more regressive than a carbon tax that recycles the revenue
through uniform transfers. Put simply, it is easy to design a carbon tax that is more
progressive than fuel economy standards. Thus, we conclude that it is difficult to argue
for fuel economy standards on distributional grounds.

This paper fills an important gap in the literature. Previous studies of fuel economy
standards have focused almost exclusively on efficiency and overall cost-effectiveness,
but the distributional impacts of fuel economy standards have received little attention.
An important exception is Jacobsen (2013), which studies the distributional impacts
of CAFE using microdata from the 2001 National Household Travel Survey. The
paper finds a similar pattern, with the estimated distributional impact flipping from
progressive to regressive once used vehicles are incorporated. In the full analysis,
Jacobsen (2013) finds that low-income households suffer proportional welfare losses
three times as large as high-income households.

Before proceeding we want to be clear about several important limitations of our
analysis. First, our maintained assumption throughout is that these impacts are borne
entirely by vehicle buyers rather than automakers or retailers. This is a reasonable as-
sumption in market segments that are highly competitive and consistent with at least
one study of subsidy incidence in the US automobile sector (Sallee 2011), but it is a
strong assumption that we are not able to verify empirically.

Second, our calculations implicitly assume that these taxes and subsidies do not
change buyers’ vehicle decisions. This is, of course, incorrect. Part of the purpose of
fuel economy standards is to move buyers toward more fuel-efficient vehicles. We
might see, for example, someone who owns a vehicle that is subsidized under CAFE
and conclude they are a “winner” when in fact, without CAFE they would have pur-
chased a different vehicle that because of CAFE is taxed. This buyer is not a winner at
all and despite buying a subsidized vehicle might have suffered a significant welfare
loss. We do not estimate a demand model so our analysis is silent on this substitution
behavior and on the broader welfare impacts of CAFE.

Third, our approach for modeling the impact of CAFE on used vehicles is ad hoc
and only a rough approximation. Fuel economy standards apply only to new vehicles
but have significant indirect impacts on used vehicle prices. We model this using a
strong simplifying assumption that we argue describes the general pattern of impacts
but cannot capture all of the complicated cross-price effects.

Fourth, our analysis is short run in that we do not model the impact of fuel econ-
omy standards on innovation. Over a longer time horizon fuel economy standards can
lead to the development of entirely new vehicle models that might have disproportion-
ate impacts across income groups. There has been some recent work on fuel economy
standards and innovation (Klier and Linn 2016), but we are not aware of any work
examining the potential long-run distributional impacts.
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1. BACKGROUND

The Corporate Average Fuel Economy (CAFE) program was introduced in the United
States in 1975 with the objective of reducing gasoline consumption. Under CAFE,
automakers are required to meet a minimum sales-weighted average fuel economy for
their vehicle fleets. These requirements have been tightened several times, most recently
with a significant revision to the program resulting in new program rules which took ef-
fect starting in 2012. For a complete regulatory history, see Anderson et al. (2011),
Knittel (2012), and Leard and McConnell (2017).

1.1. Footprint-Based Standards

As has always been the case with CAFE standards, automakers are required to meet a
minimum sales-weighted average fuel economy for their vehicle fleet. Since 2012,
however, this target now depends on the footprint of vehicles in the fleet. Calculated
as the product of a vehicle’s wheelbase (i.e., length) and track width (i.e., width), the
footprint is a simple measure of the overall size of the vehicle.

Each vehicle has a different emissions target based on its footprint and on whether
it is a car or truck. Figure 1 shows the emissions targets (in grams of carbon dioxide per
mile) for cars and trucks produced between 2012 and 2016. The rules establish in-
creasingly strict requirements on fuel economy for each vehicle model year. Larger ve-
hicles receive larger emissions targets and trucks receive preferential treatment in the
form of higher emissions targets for any given footprint and model year.

Just because a vehicle is small does not ensure that it meets the emissions target.
For example, the Mini Cooper, with a footprint of 39 square feet in 2012, received
an emissions target of 244 grams of carbon dioxide per mile. Actual emissions are
296 grams per mile, significantly above the emissions target. Thus, even though this
car is one of the smallest on the road weighing only 2,500 pounds and with 115 horse-
power, it is less fuel efficient than its footprint-based target. Thus if BMW wants to
sell more Mini Coopers, it also needs to sell more of some other vehicle that is below
its target or BMW needs to buy permits from some other automaker.
Figure 1. Emissions targets, 2012 to 2016
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Herein lies the central problem with footprint-based targets. For a given vehicle
footprint, the standards encourage automakers to make their vehicles as fuel efficient
as possible. However, the footprint-based standards create no incentive for buyers
to choose smaller vehicles. This may make sense from a political perspective in the
United States because domestic automakers produce large numbers of SUVs, cross-
overs, and pickups, but it is an expensive, inefficient approach for reducing greenhouse
gas emissions.1

Another significant distortion with the standards is the preferential treatment for
trucks. For a given footprint, trucks have a less stringent carbon emissions standard
than cars, so the standards encourage automakers to sell more trucks and fewer cars.
The preferential treatment for trucks also encourages automakers to classify as many
vehicles as possible as “trucks.”2 Under current rules “trucks” include not only pickup
trucks but also SUVs, crossovers, and minivans. These are some of the largest and
fastest growing segments in the US automobile market.3

1.2. Permit Trading Rules

Under CAFE, each vehicle sale generates a small surplus or deficit for the automaker
depending on whether the vehicle is below or above its target emissions value. The
total balance is then evaluated separately for each model year and each automaker.
If an automaker is below the total emissions target for all vehicles sold, then it has
a surplus for the year and receives permits. If instead an automaker is above the total
emissions target, then it has a deficit and must buy permits.

Permits are denoted in tons of carbon dioxide. Emissions rates are converted into
emissions levels using an assumption about how many miles each vehicle will be used
during its lifetime, with trucks assumed to be driven more total miles over their lifetime.
There are 8.887 kilograms of carbon dioxide per gallon of gasoline and 10.180 kilograms
of carbon dioxide per gallon of diesel, so given this assumption about total miles driven,
there is a simple mapping between vehicle fuel economy and total carbon dioxide emis-
sions in tons.
1. See Ito and Sallee (2018) for a broader discussion of the economic costs of attribute-based
regulation.

2. The classic example is a vehicle Chrysler manufactured called the PT Cruiser. In the early
2000s, Chrysler was making large profits on its Dodge Ram pickups and wanted to sell more
but was running up against the CAFE constraint. Ingeniously, Chrysler responded by introduc-
ing the PT Cruiser, which looked like a car but was built on a “truck” platform, thus raising
Chrysler’s average fuel economy for trucks and allowing Chrysler to sell more fuel-inefficient
pickups.

3. The biggest year ever for the US auto industry was 2015, with 17.5 million total vehicle
sales nationwide, including large year-on-year increases for trucks, SUVs, and crossovers. See
Automotive News, “U.S. Auto Sales Break Record in 2015,” January 5, 2016.
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Automakers can bank permits for up to 5 years and borrow permits for up to
3 years. This flexibility is intended to help automakers smooth over year-to-year fluc-
tuations in demand driven by macroeconomic shocks, changes in gasoline prices, and
other factors. The banking and borrowing also provides stability for the permit mar-
ket, helping to avoid permit price spikes and crashes, and mitigating concerns about
market power in permit markets.4

Permits may also be traded between automakers. Permit trading increases the ef-
ficiency of fuel economy standards. Just as with any cap-and-trade policy, trading
equalizes marginal cost across agents, achieving the targeted aggregate level of emis-
sions reductions at lowest total cost. These efficiencies are substantial with fuel econ-
omy standards because opportunities for improvements in fuel economy vary widely
across automakers. For some automakers there is low-hanging fruit, for example, be-
cause they already have relative expertise in producing and marketing fuel-efficient ve-
hicles whereas for other automakers it is much harder.

All automakers have an incentive to improve fuel economy, including those who
are well above the fuel economy standard. This was not the case under the old CAFE
rules that did not allow trading. For example, Toyota and Honda tend to sell relatively
fuel-efficient vehicles so are perennially well above the minimum fuel economy stan-
dard. For automakers in this position under the old CAFE rules, it was as if the stan-
dard did not exist. There was no penalty, but also no incentive to make further im-
provements in fuel economy. In fact, these automakers had an incentive to make
larger vehicles to pull market share away from other automakers who were constrained
by CAFE.Nowwith permit trading any improvement in fuel economy generates CAFE
credits and, thus, profit.

Automakers trade permits through bilateral trades. There is no central clearing
house for permit trading, nor is there any system in place for making permit prices
publicly available. Leard and McConnell (2017) nonetheless manage to infer permit
prices based on information from two different sources: (i) a Department of Justice set-
tlement with Hyundai and Kia resolving overstated fuel economy labels and (ii) Tesla
Motors’ SEC Filing Form 10-K from 2013 and 2014 reporting earnings from permit
sales. These sources yield a permit price of between $35 and $40 per ton. We adopt
these permit price values in the empirical results that follow, but it would be straight-
forward to incorporate updated permit prices as newer information becomes available.
We note that because each vehicle faces the same shadow value changes to the shadow
value will simply scale up and down the incidence at both the vehicle and consumer-
group (e.g., consumers of particular incomes) levels.

Interestingly, these inferred permit prices are close to recent median estimates of
the social cost of carbon (see, e.g., Interagency Working Group on Social Cost of Car-
4. See Borenstein et al. (2016) for a discussion of similar issues in cap-and-trade programs
for carbon dioxide.
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bon 2013). Thus, on the margin, automakers would appear to be facing an incentive
similar to a, for example, $40 per ton tax on carbon dioxide. (Future carbon dioxide
emissions are not discounted under CAFE, so it would actually be equivalent to a
somewhat higher tax per ton.) This permit price creates a very different incentive than
an equivalent carbon tax, however. Unlike a carbon tax, fuel economy standards do not
encourage drivers to use their vehicles less intensively. A carbon tax more efficiently
reduces gasoline consumption by encouraging drivers to buy more fuel-efficient cars
and to drive less. Fuel economy standards can never address this second margin,
nor can they, with footprint-based targets, encourage drivers to buy smaller vehicles.

1.3. Alternative Fuel Vehicles

This section reviews three features of CAFE that provide preferential treatment for
alternative-fuel vehicles. First, electric vehicles (EVs), for compliance purposes, are as-
sumed to emit no carbon dioxide. Recent empirical evidence shows that the actual car-
bon impact from EVs is quite varied depending on where and when the vehicle is
charged, but that in many cases the carbon impact of EVs may actually exceed the
carbon emissions from gasoline-powered vehicles (see, e.g., Holland et al. 2016). This
treatment of EVs was meant as an explicit subsidy and not as an accurate description
of the current carbon emissions from EVs.

Second, plug-in hybrids like the Chevrolet Volt and Toyota Prius plug-in also re-
ceive preferential treatment. These vehicles have both an electric drive train and inter-
nal combustion engine and thus can be operated using either electricity or gasoline. For
CAFE compliance purposes, the gasoline component is treated normally but the elec-
tric component is assumed to be zero carbon. This is again not an accurate description
of current emissions resulting from these vehicles. Even in parts of the country where
electricity generation tends to be relatively low carbon, the marginal source of electricity
generation is virtually always some form of fossil fuel generation.

Third, the feature that ends up being most important quantitatively during our
sample period is the treatment of flexible-fuel (or “flex-fuel”) vehicles which can run
either on E85 (a blend of 85% ethanol and 15% gasoline) or on regular gasoline. Be-
tween 2012 and 2015 when calculating CAFE compliance, flex-fuel vehicles were as-
sumed to be operated 50% using E85 and 50% with gasoline. Moreover, each gallon of
E85 was assumed to have the carbon content of only 0.15 gallons of gasoline. That is,
the ethanol component of E85 is assumed to be zero carbon.

These assumptions are probably not an accurate description of the carbon dioxide
emissions from flex-fuel vehicles. Empirical evidence is not available on the fraction of
flex-fuel vehicles that operate using E85, but the 50/50 assumption is an optimistic
assumption given that many sales of flex-fuel vehicles occur in parts of the country
where there is limited E85 availability (Anderson and Sallee 2011). The assumption
about carbon content is also optimistic and hard to reconcile with a substantial scien-
tific literature on the carbon emissions from ethanol. Quantifying the lifetime carbon
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impacts of ethanol is challenging because of land use effects and other factors, but most
studies find that, at best, ethanol is only marginally less carbon intensive than gasoline
(Knittel 2012).

As we show later in the paper, these generous assumptions lead flex-fuel vehicles to
be treated by CAFE as if they were extremely fuel efficient. Not surprisingly, automak-
ers have responded by building large numbers of flex-fuel vehicles. For the 2014 model
year, for example, there are more than 100 different models of flex-fuel vehicles for sale
in the United States. Moreover, even though the preferential treatment for flex-fuel
vehicles ended with model year 2015, this feature of CAFE was so lucrative that many
automakers were able to generate large stores of surplus credits (EPA 2016). Under
CAFE rules these credits can be banked until 2021, so these banked credits will allow
automakers to produce lower-MPG vehicles for years to come.

2. CONCEPTUAL FRAMEWORK

In this section we write down the automakers’ profit-maximization problem subject
to the CAFE constraint. From this problem we derive a first-order condition that
quantifies the implicit subsidy and tax for each vehicle which we can then take to
the empirical analysis. We first consider the case of perfect competition. The degree
to which perfect competition is a reasonable assumption varies across vehicle seg-
ments from highly competitive segments like compact sedans and midsize SUVs to
less-competitive segments like luxury vehicles where some automakers can influence
price considerably. We then relax the perfect competition assumption in the following
subsection and show that the first-order condition is similar in both cases.

2.1. Perfect Competition

The automaker chooses quantities to maximize profits,

max
q1,q2::,q J

o
J

j51
qjpj – cj q j

� �� �
: (1)

Here qj is total sales of vehicle model j. Revenues are the product of sales (qj) and prices
(pj), summed over all vehicle models. Profits are total revenues minus total costs,
where the cost of producing qj units of vehicle model j is denoted cj(qj). Here we allow
production costs to vary between vehicle models but rule out complementarities be-
tween models.

The fuel economy standard can be expressed as follows,

o
J

j51
emissionsj – targetj

� �
�VMTj � qj

h i
≤ 0: (2)

In this equation emissionsj is carbon dioxide emissions in grams per mile for vehicle
model j. Depending on its footprint, each vehicle model is assigned a target emissions
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level, targetj, also measured in grams per mile. Thus the first part of equation (2) in
parentheses reflects whether each vehicle model is above or below its target. These de-
viations are then weighted based on assumed lifetime miles traveled (VMTj) and ve-
hicle sales (qj).

The automaker maximizes profits subject to the CAFE constraint. The Lagrangian
can be written as follows,

L 5 o
J

j51
qjpj – cj q j

� �� �
– λo

J

j51
emissionsj – targetj

� �
�VMTj � qj

h i
, (3)

where λ is the Lagrangian multiplier on the CAFE constraint. Differentiating with re-
spect to qj yields the following first-order condition,

pj 5 c0j qj
� �

1 λ emissionsj – targetj
� �

�VMTj

h i
: (4)

In the first-order condition λ is the shadow value of the CAFE constraint. With per-
mit trading this shadow value equals the permit price. The permit price is the relevant
opportunity cost for all automakers, regardless of whether they have a surplus or a
deficit. The first-order condition is unchanged by banking or borrowing of permits.
For example, we could have included banked permits from previous years in the
CAFE constraint but this is not a function of qj and thus would not have entered
the first-order condition.

The first-order condition has an intuitive interpretation. Consider first the case in
which the permit price equals zero. In this case the shadow value λ is zero, and the
automaker maximizes profit by increasing the quantity sold of each vehicle up until
price equals marginal cost. This is the standard first-order condition for perfect com-
petition. For nonzero permit prices, the automaker maximizes profit by adjusting
quantities to reflect both marginal cost and the additional cost (or benefit) that accrues
because of the standard. For vehicle models that emit more than their target emissions
level there is an additional cost for each unit sold, so the optimal quantity is lower. For
vehicle models that emit less than their target emissions level there is an additional
benefit for each unit sold, so the optimal quantity is higher.

In short, the fuel economy standard creates a tax for fuel-inefficient vehicles and a
subsidy for fuel-efficient vehicles.5 In the empirical analyses that follow we use this
insight to calculate the taxes and subsidies associated with all vehicle models sold in
the United States. We focus on the period since 2012, which allows us to use permit
prices to measure the shadow value of the constraint. In principle, however, it would
be relatively straightforward to take parameter estimates from studies like Anderson
5. See Kwoka (1983), Helfand (1991), and Holland et al. (2009) for related discussions.
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and Sallee (2011) and Jacobsen (2013) to infer the shadow value of λ and use this
general approach to perform analogous calculations for the pre-2012 period.

2.2. Imperfect Competition

The problem for an oligopolist automaker is similar except they face a downward-
sloping demand curve and in the first-order condition price is replaced with marginal
revenue,

pj 1 o
I

i51
qi
∂pi
∂q j

� 	
5 c0j q j

� �
1 λ emissionsj – targetj

� �
�VMTj

h i
: (5)

Here we have allowed cross elasticities to be nonzero, so changing the quantity sold of
vehicle model j can affect sales not only of vehicle model j but also of all other vehicle
models in the automaker’s fleet. If we assume these cross elasticities are zero, the first-
order condition simplifies further,

pj 1 q j
∂pj
∂q j

5 c0j q j
� �

1 λ emissionsj – targetj
� �

�VMTj

h i
: (6)

In either case, the first-order condition takes on this same basic form with marginal
revenue equal to marginal cost. Just as with the first-order condition with perfect com-
petition, the CAFE constraint enters the first-order condition additively as an addi-
tional cost (or benefit) of selling one more unit of model j. Here we have assumed that
automakers are choosing quantities; if we instead use Bertrand-Nash the first-order
condition is somewhat different but the CAFE constraint enters similarly (Gillingham
2013; Jacobsen 2013).

Thus, overall, pricing behavior with imperfect competition is similar but not iden-
tical to pricing under perfect competition. Regardless of market structure, fuel econ-
omy standards lead automakers to price fuel-efficient vehicles lower than they would
have been otherwise, and to price fuel-inefficient vehicles higher than would have been
otherwise. In the sections that follow, we use this insight together with permit prices
to quantify these implicit subsidies and taxes.

3. EMPIRICAL ANALYSIS

The key insight from the previous section is that fuel economy standards create an
implicit subsidy for fuel-efficient vehicles and an implicit tax for fuel-inefficient vehi-
cles. In this section, we pair this insight with rich microdata from the US automobile
market to estimate the distributional impact of fuel economy standards. We proceed
in several steps. First, we show how each vehicle model compares to its target emis-
sions level. Second, we use the automakers’ first-order condition to quantify the im-
plicit tax (or subsidy) for each vehicle model. Third, we use national data on vehicle
registrations by census tract to see how the average impact of CAFE standards varies
between high- and low-income tracts.
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3.1. Data

We use data from DataOne Software that describe all cars and trucks that were avail-
able for sale in the United States during the period 1979–2012. For each vehicle, we
know the manufacturer, model, model year, body style, engine type, fuel tank size, and
driveline. We also know the wheelbase, front track, and rear track measurements used
to calculate each vehicle’s footprint, as well as fuel type and vehicle category. We divide
fuel types into four categories—gasoline, electric, electric hybrids, and flex-fuel—where
gasoline includes vehicles fueled by gasoline, ethanol, natural gas, or diesel. We divide
vehicle categories into “trucks” and “cars” following Environmental Protection Agency
(EPA) guidelines which treat sports-utility vehicles, pickup trucks, minivans, and vans
as trucks and compact, large, midsize, minicompact, subcompact cars, two seaters, and
station wagons as cars. For each vehicle we also know the truncated vehicle identifi-
cation number (VIN), which allows us to merge this information with fuel economy
and emissions data from the EPA. For CAFE compliance purposes, the relevant ve-
hicle fuel economy comes from the EPA’s City and Highway test procedures (referred
to as the “two-cycle” tests), not the measures used for vehicle labels. For summary sta-
tistics, see table 1.

We combine this information with data from Polk Automotive on all registered
vehicles in the United States. These data are for the calendar year 2012 and provide
census-tract level counts by vehicle type, including not only new cars but also the en-
tire stock of older vehicles. Counts distinguish vehicles by manufacturer, model, model
year, engine size, cylinders, and fuel type. That is, for each census tract it is not just
that we know how many 2012 Toyota trucks there are. We know, for example, how
many are flexible-fuel 2012 Toyota Tundra trucks with a 5.7L V8 engine. A limited
number of vehicles are further differentiated by various trim levels, such as the
Mercedes-Benz C1550, which is manufactured in both standard and “4Matic”models.
However, these data do not distinguish between all the available model options that
can be installed, such as leather upholstery. We merge this tract-level vehicle registra-
tion data from Polk with the vehicle specifications from DataOne using each vehicle
type’s truncated VIN. Finally, we use tract-level measures of mean and median house-
hold income from the American Community Survey (ACS).

3.2. Comparing Actual Emissions to Targets

We first calculate how actual emissions for each vehicle model compare to that vehi-
cle’s footprint-based target. For this exercise we focus on all vehicle models from the
2012 model year. Using each vehicle’s footprint as well as whether it is a truck or a car,
we calculate its emissions target using the official formula from NHTSA (2010, ta-
ble III.B.2).

Figure 2 shows how each car from vehicle model year 2012 compares to its emis-
sions target. Observations are scaled by each vehicle model’s total sales in 2012. The
x-axis is each vehicle’s footprint, measured in square feet. The green solid line indicates
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the emissions target in grams of carbon dioxide per mile. Most cars are within the
upward-sloping part of the emissions target function though there are a sizable num-
ber of cars below 41 square feet in the flat portion of the function. Actual emissions
vary significantly from the targets. This is particularly true above the line with a
nonnegligible fraction of vehicles that emit more than twice as much carbon dioxide
per mile as is targeted.

As indicated in the figure, there are several electric vehicles as well as a large num-
ber of flex-fuel vehicles. This includes several high-selling vehicle models, including the
Ford Focus FFV, Chrysler 300 FFV, and Dodge Charger FFV. We calculated emis-
sions for these vehicles using the standard CAFE assumptions for flex-fuel, so these
vehicles show up as having low carbon dioxide emissions.

Figure 3 is the analogous figure for trucks for model year 2012. Most vehicles are
within the upward-sloping part of the emissions target function, and again, there is
a great deal of variation in emissions for any given footprint. There were no mass-
Table 1. Summary Statistics

Mean SD Min Max

A. All vehicle characteristics:
Footprint (square feet) 49.3 8.2 26 111.5
Vehicle classified as “truck” .49 .50 0 1
Emissions target (CO2 grams per mile) 331.2 50.6 244 395
CAFE emissions (CO2 grams per mile) 323.8 79.0 0 743.5
Fuel economy (miles per gallon) 29.2 7.8 12.0 74.3
Implied tax or subsidy ($) 227.0 515.5 –3,270.3 3,178.1

B. New vehicle characteristics:
Footprint (square feet) 48.0 6.1 26.8 77.6
Vehicle classified as “truck” .44 .50 0 1
Emissions target (CO2 grams per mile) 297 39 244 395
CAFE emissions (CO2 grams per mile) 272 71 0 628
Fuel economy (miles per gallon) 34.8 8.9 14.2 70.8
Implied tax or subsidy ($) 53.2 491.3 –2,237.4 2,556.4

C. Census tract characteristics:
Population 4,627 2,814 0 55,283
Median household income ($000) 55.3 27.0 2.5 250
Mean household income ($000) 69.2 35.5 5.01 582.3
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marketed electric or plug-in hybrid trucks but, again, there are a large number of flex-
fuel vehicles. Flex-fuel vehicles are particularly common among trucks with very large
footprints andmany of these flex-fuel trucks sell in high volumes. The three best-selling
flex-fuel trucks in 2012 were the Ford F150, Chevy Silverado, and Mercury Mariner.

In the following section, we take this information to calculate the implicit tax (or
subsidy) for each vehicle model. In making these calculations we treat flex-fuel vehicles
as regular vehicles. That is, we ignore the preferential treatment of flex-fuel vehicles.
We do this because under CAFE there is a maximum limit on how much each man-
ufacturer can use the flex-fuel feature and most automakers operate close to this cap.6
Figure 2. Each vehicle model relative to target, cars. Figure based on fuel economy from the
EPA’s City and Highway test for the 2012 model year and NHTSA standards. Following EPA
guidelines, fuel economy for plug-in hybrids assumes a 50-50 gasoline and electricity split and
fuel economy for flex-fuels assumes a 50-50 gasoline and E85 split. Circle sizes correspond to
national sales for each vehicle model. The green solid line indicates the emissions target in grams
of carbon dioxide per mile.
6. In the 2014 model year, for example, the flex-fuel limit in the CAFE program was 1.2 miles
per gallon. See EPA (2015, 22). Thus, flex-fuel vehicles for that model year cannot increase a
manufacturer’s average fuel economy by more than 1.2 miles per gallon. EPA ensures that no
manufacturer exceeds the maximum allowable value of the incentive by calculating fleet average
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Once at the cap, there is no benefit from selling an additional flex-fuel vehicle, so the
automaker will not take this into account when pricing vehicles. Moreover, Anderson
and Sallee (2011) show that, in practice, flex-fuel vehicles tend to sell for exactly the
same price as equivalent regular vehicles.

3.3. Implicit Taxes and Subsidies

CAFE obligations are tradable under the new rules, so the permit prices make it pos-
sible to quantify the exact magnitude of these implicit subsidies and taxes. Using the
first-order condition in equation (4), we calculate the implicit tax or subsidy imposed
by the CAFE constraint as
Figure 3. Each vehicle model relative to target, trucks. This figure plots each vehicle’s carbon
dioxide emissions (in grams per mile) against its footprint (in square feet). The horizontal
upward-sloping line indicates the target emissions for each vehicle based on its footprint. Emis-
sions are based on fuel economy from the EPA’s City and Highway test for the 2012 model year
and NHTSA standards. Following EPA guidelines, fuel economy for plug-in hybrids assumes a
50-50 gasoline and electricity split, and fuel economy for flex-fuels assumes a 50-50 gasoline and
E85 split. Circle sizes correspond to national sales for each vehicle model.
fuel economy both with and without the incentive. Fiat Chrysler, Ford, GM, Jaguar Land Rover,
Mercedes, and Volkswagen all maximized the usage of the flex-fuel incentive for model year
2014.
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tj 5 λ emissionsj – targetj
� �

�VMTj

h i
, (7)

where tj is the tax or subsidy borne by vehicle j. We use the observed permit price for λ
and the EPA’s standard assumption for the expected lifetime mileage, VMTj.

Figure 4 shows the dollar amount of implied tax (subsidy) per car. The x-axis is
each vehicle’s footprint, measured in square feet. The solid line is a nonparametric es-
timation of the relationship between a vehicle’s footprint and its implied tax using a
local polynomial kernel-weighted regression. In general, cars with small footprints
are more likely to be subsidized, while those with large footprints are more likely
to be taxed. For cars with footprints between 40 and 60, the polynomial line is near
flat around zero with a slight upward trend for cars, although most cars lie under the
polynomial line and are subsidized for having emissions below their target.

Many of the most popular vehicle models are subsidized. Circle sizes in the figure
are proportional to national sales, and many of the most popular vehicles are subsi-
dized. The top three selling cars all have relatively high rates of subsidy; the Toyota
Camry 2.5 liter version is subsidized at $260, Honda Civic 1.8 liter is subsidized at
Figure 4. Implicit taxes and subsidies, cars. Implicit tax and subsidy calculations are based on
fuel economy data from the EPA’s City and Highway test for the 2012 model year, 2012 trad-
ing permit price, and vehicle expected lifetime mileage. Implicit taxes and subsidies are measured
in 2012 dollars. Circle sizes are proportional to national sales. Color version available as an
online enhancement.
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$395, and the Nissan Altima 2.5 liter is subsidized at $161. Many of the cars with
implicit taxes greater than $1,000 are expensive sports cars, and sales for these vehicles
tend to be relatively low, as indicated by the small circle sizes.

Figure 5 is the corresponding plot for trucks. Overall the polynomial is much flatter
for trucks. Trucks with small footprints are not more likely to be subsidized, and
trucks with large footprints are only slightly more likely to be taxed. Circle size is again
proportional to national sales. The top three most popular trucks are all subsidized.
The Honda CR-V AWD is subsidized at $380, Chevy Silverado is subsidized at
$1,312, and the Dodge Grand Caravan is subsidized at $1,314.

3.4. Distributional Impacts

In this section, we incorporate the vehicle registration data to describe distributional
impacts. From the analysis in the previous section, we know the implied tax (or sub-
sidy) for all new vehicles. In addition, fuel economy standards impact used vehicle
prices, and we use an ad hoc approach for modeling the impact on used vehicles.
We then use the vehicle registration data, and implied tax (or subsidy) for all vehicles,
to calculate the average impact of fuel economy standards by census tract. Finally, we
Figure 5. Implicit taxes and subsidies, trucks. Implicit tax and subsidy calculations are based
on fuel economy data from the EPA’s City and Highway test for the 2012 model year, 2012
trading permit price, and vehicle expected lifetime mileage. Implicit taxes and subsidies are mea-
sured in 2012 dollars. Circle sizes are proportional to national sales. Color version available as
an online enhancement.
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divide tracts by income decile to show how impacts differ across high- and low-income
households.

Buyers substitute between new and used vehicles. Thus, when the price increases
for a new vehicle, this pushes equilibrium prices upward for similar used vehicles. This
same price increase for a new vehicle also means that there will be fewer of that type of
vehicle in circulation, so these vehicles will continue to sell at a premium as they enter
the used vehicle market. Eventually, however, vehicle scrappage decisions mitigate
these impacts, as higher-priced vehicles are scrapped at systematically lower rates than
lower-priced vehicles. For this reason and because they are poor substitutes for new
vehicles, we would not expect fuel economy standards to have more than a negligible
impact on very old vehicles.

Our approach for modeling the impact on used vehicles follows this economic in-
tuition. In particular, we assume that the impact of fuel economy standards attenuates
throughout a vehicle’s lifetime according to the empirical average scrap rate in Jacobsen
and van Benthem (2015). This approach assigns the 100% impact to vehicles that are
less than one year old and a 0% impact for vehicles that are 18 years old. Take, for
instance, the Toyota Camry, which has been sold continuously throughout our sam-
ple period and with approximately the same vehicle footprint. The 2007 model year
Toyota Camry (3.5 liter) has an implied subsidy of $117 when new. According to
Jacobsen and van Benthem (2015), approximately 7% of cars will be scrapped after
5 years. In order to find the implied subsidy for the 2007 Camry in 2012, the last year
of our sample period, we scale the $117 value by 7%, yielding a subsidy of $109. We
use separate scrap rates for cars and trucks, and scrap rates vary from year to year; as
an example, Jacobsen and van Benthem (2015) estimates that 7%, 22%, and 51% of
cars and 8%, 22%, and 46% of trucks will be scrapped after 5, 10, and 15 years, re-
spectively. However, we do not distinguish between vehicle manufacturer or other ve-
hicle characteristics. This attenuation formula is, admittedly, a strong assumption that
ignores potentially important differences across vehicle classes, cross-price elasticities,
and other factors. We argue that this nonetheless captures the general pattern of price
impacts predicted by economic theory.7

From our vehicle registration data we have tract-level information on the number
of vehicles by model and vintage. We use the implied tax (or subsidy) for each vehicle
type, both new and used, to calculate the average tax (or subsidy) per vehicle in each
tract. We report this and several related statistics in a series of results below. In all
cases, we show results separately for new vehicles only and for new and used vehicles.
Moreover, because our objective is to examine the distributional patterns, we divide
tracts into deciles using mean household income.
7. Jacobsen and van Benthem (2015) report depreciation rates for vehicles over time. If we
instead use these functions to adjust the CAFE taxes, the results below with respect to the re-
gressivity of CAFE are exacerbated.
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3.4.1. Average Tax per Vehicle

Figure 6 shows box plots of the average tax per vehicle by income decile. As usual with
box plots, the middle line indicates the median, a shaded box indicates the inner-
quartile range (IQR), and “whiskers” indicate 1.5 times the IQR. Whether we exam-
ine new vehicles only or both new and used vehicles, the median is fairly similar across
deciles. Between high- and low- income tracts, the median tax per vehicle varies by
only about $100.

Although the median is quite similar across deciles, there is a modest increase in
the average tax per vehicle in the eighth, ninth, and, particularly, in the tenth decile.
This reflects higher-income households buying vehicles that, relative to their footprint,
are less fuel efficient on average. High performance luxury vehicles, for example, are in
this category. The differences across decile are relatively small, however, relative to the
range of implicit taxes across individual vehicle models in the previous analysis, reflect-
ing a relatively weak correlation between income and the implicit taxes from CAFE.

The figure also shows that there is a large amount of variation within decile. The
“whiskers” for all 10 deciles include both positive values (taxes) and negative values
(subsidies), so there is a wide range of experiences across tracts in any given decile.
This wide variation points to fuel economy standards being an imprecise instrument
for redistribution. Lower-income households buy a range of different types of vehicles,
including very fuel-inefficient vehicles, so CAFE increases costs for these households,
even while decreasing costs for others.

It is worth emphasizing again that these calculations assume that the taxes and sub-
sidies imposed by CAFE are borne entirely by vehicle buyers rather than automakers
or retailers. This assumption is most reasonable in segments of the vehicle market for
which supply is highly elastic or for which demand is highly inelastic. Incomplete pass-
through of the taxes and subsidies imposed by CAFE standards would reduce the
overall magnitude of our estimated impacts as well as, potentially, by changing the rel-
ative burdens borne by different income groups. If lower-income buyers are more price
elastic (West 2004), then they would tend to bear a smaller fraction of both the taxes
and subsidies from CAFE, thereby making CAFE more progressive.

3.4.2. Average Tax as a Share of Income

Figure 7 plots the average tax per vehicle as a share of median income. For each tract
we know the average tax (or subsidy) per vehicle, and for this figure we divide this by
the median income in the tract. We report shares as a percentage, so 1 is 1% of income.
As before, we then divide census tracts into income deciles. Effectively, we are cal-
culating the average tax as a share of median income for each of the deciles.8 Income
8. This calculation masks within-tract variation in vehicles and incomes. Because the main
focus of the paper is how the incidence changes across income deciles, our implicit assumption is
that the same slope of incidence to income is present both across and within deciles.
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levels vary widely across the deciles, so these scaled results look considerably different
from the previous figure.9

When we consider new vehicles only, CAFE is slightly progressive. That is, high-
income households bear a bit more tax per vehicle as a share of income. However, this
pattern reverses sharply once we include used vehicles. The second panel of figure 7
shows that the median household in the bottom decile bears a tax that is about 0.6% of
household annual income. This is more than twice the burden experienced by the me-
dian household in the top decile. Even though the average tax per vehicle tends to be
higher in the top income deciles, it is being divided by a much higher level of income,
yielding a regressive pattern overall.

Overall, the median impacts are small when viewed as a fraction of annual income.
Even for the bottom decile, the average tax per vehicle is well below 1% of annual in-
come. Keep in mind, moreover, that households buy a vehicle only once every couple
of years so the annualized cost of CAFE is considerably smaller. That said, the box
plots also show that there is a wide range of experiences across tracts, with some tracts
experiencing impacts that are twice as large as the median. There is also a wide range
of experiences across households within tracts. While the average tax per vehicle is
relatively small as a share of annual income, there are individual households who bear
much larger costs.

3.5. Comparison to Other Studies of CAFE

There have been very few previous attempts to measure the distributional effects of
fuel economy standards. An important exception is Jacobsen (2013), which studies
Figure 7. Average tax per vehicle as a share of median income, by income decile. a, New ve-
hicles. b, All vehicles.
9. The reader will note the larger amount of variation in this measure for lower-income dec-
iles, while the distributions were similar across deciles for the average tax in fig. 6. The standard
deviation of median incomes across tracts within decile divided by the median income is largest
for decile 1, driving this large variation for the lower deciles.
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the distributional impacts of CAFE using data from the 2001 National Household
Travel Survey. The estimates from Jacobsen (2013) are not directly comparable as
they are based on older data, and for the older version of CAFE without footprint-
based targets. The paper is nonetheless an important point of comparison as it is
one of the very few studies to look at distributional impacts, and because the study
is unusually well done, with an innovative dynamic model that in many ways goes
far beyond the scope of our study.

In Jacobsen (2013) the estimates of distributional impacts come out of a rich equi-
librium model in which customers choose vehicles to maximize utility and firms price
vehicles to maximize profits. Moreover, used cars are incorporated explicitly into the
model, with consumers choosing between new and used vehicles, and with older
vehicles being scrapped over time endogenously. While not capturing the full long-
run impacts of CAFE (e.g.. endogenous characteristics or innovation), the model does
capture how fuel economy standards lead customers to substitute to more fuel-
efficient vehicles, behavior that is central to understanding the full welfare impact
of CAFE.

Jacobsen (2013) finds that the distributional effects of fuel economy standards de-
pend critically on incorporating used cars. When only the impact on new vehicles is
considered, CAFE has approximately the same welfare impact on high- and low-
income households as a fraction of income. Higher-income households are more likely
to own new cars, but also have much higher incomes. However, once used vehicles are
incorporated CAFE becomes sharply regressive, with low-income households ex-
periencing welfare losses that are three times as large as a percentage of income as
those experienced by high-income households. It makes sense that fuel economy stan-
dards would increase the price and alter the composition of used vehicles, but Jacobsen
(2013) was one of the first studies to capture these dynamics, and the first to show the
implications for distributional impacts.

The one other paper that estimates the distributional impact of fuel economy stan-
dards is Levinson (2019, in this issue). Using data from the 2009 National Household
Travel Survey, Levinson (2019, in this issue) shows that high-income households
spend on average four times more on gasoline than low-income households, while hav-
ing about three times as many vehicles of approximately the same average fuel econ-
omy. Consequently, fuel economy standards, which are essentially a tax per vehicle, are
more regressive than a gasoline tax. Moreover, Levinson (2019, in this issue) finds that
high-income households tend to buy higher footprint vehicles, so they do relatively
better under footprint-based standards and, thus, footprint-based standards are even
more regressive than regular standards.

3.6. Comparison to Gasoline Tax

We can now compare the distributional impacts of CAFE with previous estimates in
the literature on the distributional impacts of a gasoline or carbon tax. Previous studies
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have examined the distributional effects of both gasoline taxes (Poterba 1989, 1991;
West 2004; Bento et al. 2009) and carbon taxes (e.g., Burtraw et al. 2009; Hassett
et al. 2009; Williams et al. 2015).

A common theme in the existing literature is that the distributional effects of gas-
oline and carbon taxes largely depend on how additional revenue from the tax is re-
cycled. For example, gasoline taxes are significantly less regressive when revenues are
used to cut labor tax rates than when revenue is discarded (West and Williams
2004; Williams et al. 2015). Bento et al. (2009) show that if returned lump sum
on a per capita basis, a gasoline tax could make the bottom four income deciles better
off on average, even without incorporating external benefits. Burtraw et al. (2009)
analyze five different uses for revenues raised from cap-and-trade auction, including
lowering income and payroll taxes, and find significant differences in progressivity.
Similarly, Rausch et al. (2010) simulate the distributional effects of carbon taxes un-
der two redistribution bundles with varying amounts of revenue set aside for deficit
reductions or cuts for other taxes. They find all scenarios to be progressive in lower-
income deciles and proportional in upper deciles; however, the degrees of incidence
exhibit significant differences over time. Meanwhile, Metcalf (2009) proposes a
distributional-neutral carbon tax by offsetting price increase with capped income tax
credit.

Several studies have shown that the regressive implications of carbon taxes can be
overstated by overlooking index government transfer programs (Rausch et al. 2010;
Dinan 2012; Fullerton et al. 2012). Several government transfer programs, including
Supplemental Security Income, are indexed to consumer price measures and thus
increase alongside the price of carbon. For example, accounting for transfer program
indexing, Rausch et al. (2010) use a computable general equilibrium model of the
United States to show that carbon taxes are moderately progressive, even ignoring dis-
tribution of after-tax revenue. They find that the lowest two income quintiles are
made better off under a carbon tax. In part, the results in Rausch et al. (2010) reflect
that a portion of the carbon price is shifted back to the owners of natural resources and
capital, which lessens the regressivity of a carbon tax policy. Finally, Fullerton et al.
(2012) show that under partial indexing of transfer funds, a carbon tax is progressive
for households in the bottom half of the expenditure distribution.

A thorough review of each of these studies focusing on the methods and under-
lying assumptions is beyond the scope of this paper. However, we attempt to sum-
marize the literature by regressing each paper’s incidence measure on the income dec-
ile number, where 1 is the lowest decile and 10 is the highest. That is, for each of
the papers, we regress the incidence as a share of income on the decile number. For
example, our analysis implies that the incidence as a share of median income for dec-
iles 1 through 10, respectively, is: 0.111, 0.167, 0.121, 0.133, 0.121, 0.0926, 0.116,
0.139, 0.107, and 0.108. Regressing these on the decile yields an average slope of
–.003; this is slightly regressive. A progressive policy would imply a positive slope.
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The coefficient provides a rough idea of the average change in incidence when moving
one decile. Given the summary nature of the analysis, we omit standard errors from
the table.

Table 2 summarizes this exercise. Our results are listed in the first row. Each
study is listed in the first column and studies are separated into three panels based
on the type of recycling: no recycling, lump-sum transfers, and tax cuts. Further in-
formation on the recycling treatment is listed in the Notes column. For example, un-
der the lump-sum transfers panel, the notes indicate whether lump-sum transfer was
uniform or proportional to household income. Similarly, within the tax cuts panel,
the notes list whether income, labor, or payroll taxes were lowered using tax revenue.
We also track which studies use transfer indexing. The fourth and final column
codes each carbon tax treatment as regressive (R), progressive (P), or a combination
of the two if the direction of incidence switches. In the case of the latter, the paren-
theses by each letter contain which income groups are progressive and which are re-
gressive.

We measure the relative progressivity or regressivity of the tax by the slope of the
mean welfare impacts across household income group. We report slopes for welfare
impacts measured as a per capita share of income as well as the level of incidence when
available. The slope captures the direction of the incidence—negative slopes corre-
spond to regressive taxes and positive slopes to progressive taxes—as well as the mag-
nitude. We calculate the slope by running a linear regression of the welfare measure on
decile as described above, except Bento et al. (2009), which is measured in quartiles,
and West and Williams (2004) and Williams et al. (2015), which are measured in
quintiles. We adjust the slopes for these two studies by multiplying the slope from
the regression by the number of income categories divided by 10. This makes the
slopes we report in the table comparable to a per-decile change.

Table 2 shows that CAFE is more regressive than a carbon tax with lump-sum
transfers. The exact magnitude of the difference depends on which study is used
for comparison, but in most cases CAFE is considerably more regressive. Moreover,
CAFE is significantly more regressive than a carbon tax used to finance an expansion
of the earned income tax credit (EITC), or presumably, other tax credits aimed at
lower-income households. In contrast, CAFE is more progressive than carbon taxes
used to reduce progressive taxes, such as labor and payroll taxes. Again, the exact mag-
nitude differs across studies, but in all cases CAFE is considerably more progressive.
Labor and payroll taxes are distortionary, so there are efficiency gains from using car-
bon tax revenue in this way, but these efficiency gains must be balanced against a pro-
nounced negative impact on equity.

4. CONCLUSION

Economists have long complained that fuel economy standards are an inefficient way
to reduce gasoline consumption. In a survey of top economists, 90% answered that
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Table 2. Comparing the Distributional Impact of CAFE to a Carbon Tax

Paper Notes
Slope,
Share

Slope,
Level R/P

Davis and Knittel –.003 6.481

Recycling Method: No Recycling

Burtraw et al. (2009) None –.299 R
Fullerton et al. (2012) Partial transfer indexing –.217 R

Full transfer indexing –.214 R
Hassett et al. (2009) None –.296 R
West (2004) None –.022 P(1:6),

R(6:10)
West and Williams

(2004) None –.144
P(1:2),

R(2:5)

Recycling Method: Lump-Sum Transfers

Bento et al. (2009) Uniform .083 38.773 P
Proportional to income –.017 –6.454 P(1:8),

R(8:10)
Proportional to VMT .007 9.033 P

Burtraw et al. (2009) Uniform .164 P
Uniform, taxed .360 P

West and Williams
(2004) Uniform .331 P

Williams et al. (2015) Uniform, full transfer indexing .617 P

Recycling Method: Tax Cuts

Burtraw et al. (2009) Labor tax –.444 R
Payroll tax –.379 R
Expanded EITC .474 P

West and Williams
(2004) Labor tax –.083 R

Williams et al. (2015) Labor tax, full transfer
indexing

.020 R(1:2),
P(2:5)

Capital tax, full transfer
indexing –.116 R
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they would prefer a gasoline tax over fuel economy standards (IGM 2016).10 Fuel
economy standards do not achieve the efficient level of vehicle usage, nor do they cre-
ate efficient incentives for owners to scrap older fuel-inefficient cars, nor do they effi-
ciently distinguish between vehicle models with different average longevities ( Jacobsen
et al. 2018).

Yet policy makers repeatedly turn to fuel economy standards. In part, this prefer-
ence reflects a view that gasoline taxes are regressive. A growing literature in economics
shows, however, that the regressivity of a gasoline tax depends critically on what is
done with the revenues that are generated. If revenues are returned to households pro-
gressively, or even through lump-sum transfers, then a gasoline tax can be made to be
strongly progressive, with, for example, the bottom four income deciles being made
better off, on average (see, e.g., Bento et al. 2009).

Thinking about whether fuel economy standards are regressive or progressive is
less intuitive because the costs are less salient. Fuel economy standards do impose
costs, however. We show that standards impose a constraint in the automakers’ profit
maximization problem that imposes an implicit tax (or subsidy) on each vehicle type.
These implicit prices can be exactly calculated in our context because under US rules
automakers can trade obligations, so permit prices provide a direct measure of the
shadow value of the constraint. We then combine this information with rich micro-
data on vehicle registrations to estimate the distributional impacts.

When we consider new vehicles only, we find that CAFE is mildly progressive. But,
of course, fuel economy standards impact not only new vehicles but used vehicles as
well. When we include used vehicles, the pattern reverses and we find that CAFE
is mildly regressive. High-income households bear less cost as a fraction of income
than low-income households. Thus fuel economy standards are more regressive than
a gasoline tax with revenues returned lump sum. We conclude, therefore, that it is
difficult to argue for fuel economy standards on the basis of distributional concerns.
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